

EVALUATION CERTIFICATE

No. 0200-WL-12109

Object name ER500-F

Object type A weight transmitter for an automatic gravimetric weighing instru-

ment

Issued by FORCE Certification

EU - Notified Body No. 0200

In accordance with OIML R61:2017, WELMEC 7.2:2020 and WELMEC Guide 8.8:2017 on

metrological aspects of automatic weighing instruments.

Fractional factor (pi) 0.5 (refer to 3.10.2.1 of EN 45501:2015).

Issued to Flintec UK Ltd.

Caxton House Caxton Place,

Pentwyn, Cardiff CF23 8HG

United Kingdom

Manufacturer Flintec UK Ltd.

In respect of Automatic gravimetric weighing instruments.

Characteristics Suitable for an automatic gravimetric weighing instrument with the follow-

ing characteristics:

Filling method: Single fill. Reference class: Ref(0.5)

Maximum number of

verification scale intervals: n_i = 10,000 per interval/range

Minimum input voltage per VSI: $\geq 0.2 \,\mu\text{V}$

The essential characteristics are described in the annex.

Description and The weight transmitter is described and documented in the annex

documentation to this certificate.

Remarks Summary of tests involved: See the annex to this certificate.

This evaluation certificate cannot be quoted in an EU type examination certificate without permission from the holder of the certificate mentioned above.

The annex comprises 6 pages.

Issued on 2022-01-13

FORCE Certification references:

Task no.: 121-24186.90.40 and ID no.: 0200-WL-12108-1 Signatory: Jens Hovgård Jensen

Descriptive annex

	Contents	Page
1.	Name and type of instrument	2
2.	Description of the construction and function	2
2.1	Construction	2
2.2	Devices	2
2.3	Software	3
3.	Technical data	3
3.1	Weight transmitter	3
4.	Interfaces	5
4.1	Load cell interface	5
4.2	Communication and I/O interfaces	5
5.	Inscriptions	5
6.	Securing and sealing	5
7.	Tests	6
8.	Documentation	6
8.1	Product specification	6
8.2	Test & Examination report	6

1. Name and type of instrument

The weight transmitter is designated ER500-F. It is an electronic weight transmitter to be connected to a separate load receptor and capable of either transmitting the instant weight to an external controller.

2. Description of the construction and function

2.1 Construction

The electronic weight transmitter consists of two electronic boards: A main board bearing the microcontroller and all other components and a display board. The main board's power circuitry, microcontroller, analogue section, interface port and logic I/O.

The display has LED indication for: '-' (negative weight), Zero, NET, Stable and status of the three logic Inputs and the three logic Outputs. The weight display has 6 seven-segment digits. The weight unit (t, kg or g) is displayed at a separate label fixed to the inside of the transparent lid covering the entire display and keyboard.

The enclosure is made of ABS plastics intended for mounting on to a DIN rail and with pluggable screw terminals along the top and bottom for connection of power, load cell, various interface ports, voltage- and current outputs and logic I/O.

Behind the transparent lid at the front of the enclosure are 5 keys for operating the functions of the weight transmitter.

All instrument calibration and metrological setup data are stored in the non-volatile memory.

The weight transmitter is power supplied with 9 - 32 VDC, \leq 4 W.

2.2 Devices

The weight transmitter may have the following devices:

- Selftest function
- Initial zero-setting ($\leq 20\%$ of Max)
- Semi-automatic zero setting ($\leq 4\%$ of Max)
- Zero tracking ($\leq 4\%$ of Max)
- Semi-automatic subtractive tare weighing
- Pre-set tare
- Recall of Gross indication when tare is active
- Determination of stability of equilibrium
- Indication of stability of equilibrium
- Multi-range and multi-interval function
- Checking of display
- Gravity compensation
- Traceable Access Counter
- Command via external device (PC)
- Net, Zero, Stable indicators
- Range in use indicators (multi-range variant)

2.3 Software

The software version is displayed during the start-up of the weight transmitter. (Alternating with the TAC number). The version format is xx.yy.zz, where x is the basic software family, while yy is version numbers for minor legally relevant changes and zz is changes and corrections not influencing the legal function of the software.

The approved software version is 01.01.zz.

3. Technical data

3.1 Weight transmitter

Type: ER500-F
Reference class: Ref(0.5)
Accuracy class: 0.5, 1 or 2

Single-interval, multi-range or multi-interval

Maximum number of verification scale intervals(n_i): $\leq 3 \times 10000$ Minimum input voltage per verification scale (d): $\geq 0.2 \ \mu V$

MinFill: see tables below.

Extra warm-up time:

Maximum time between automatic zero-setting:

Excitation voltage:

Maximum subtractive tare:

Max

Minimum input impedance for load cells:

Max

Maximum input impedance for load cells:

1200 Ohm

Electromagnetic class: E2

Load cell interface: 4-wire or 6-wire

Supply voltage: 9-32 VDC - not to be supplied from DC

mains.

Temperature range. -15 °C to +55 °C Maximum cable length between ER500 and junction box 1533 m/mm²

MinFill for 0.2 μ V \leq d < 0.4 μ V

d	X(0.5)		X(1)		X(2)	
[g]	d	[g]	d	[g]	d	[g]
0,1	281	28,1	70	7	18	1,8
0,2	561	112,2	70	14	18	3,6
0,5	842	421	70	35	18	9
1	1683	1683	140	140	18	18
2	1683	3366	210	420	18	36
5	1683	8415	420	2100	35	175
10	2525	25250	420	4200	105	1050
20	2525	50500	420	8400	105	2100
50	2525	126250	630	31500	105	5250
100	2525	252500	630	63000	158	15800
200	2525	505000	630	126000	158	31600
500	2525	1262500	630	315000	158	79000

MinFill for 0.4 $\mu V \leq d < 0.8~\mu V$

d	X(0.5)		X(1)		X(2)	
[g]	d	[g]	d	[g]	d	[g]
0,1	141	14,1	35	3,5	9	0,9
0,2	141	28,2	35	7	9	1,8
0,5	281	140,5	35	17,5	9	4,5
1	421	421	35	35	9	9
2	842	1684	70	140	9	18
5	842	4210	210	1050	9	45
10	842	8420	210	2100	18	180
20	1263	25260	210	4200	53	1060
50	1263	63150	315	15750	53	2650
100	1263	126300	315	31500	53	5300
200	1263	252600	315	63000	79	15800
500	1263	631500	315	157500	79	39500

MinFill for 0.8 μ V \leq d

d	X(0.5)		X(1)		X(2)	
[g]	d	[g]	d	[g]	d	[g]
0,1	71	7,1	18	1,8	6	0,6
0,2	71	14,2	18	3,6	6	1,2
0,5	71	35,5	18	9	6	3
1	141	141	18	18	6	6
2	211	422	18	36	6	12
5	421	2105	35	175	6	30
10	421	4210	105	1050	11	110
20	421	8420	105	2100	17	340
50	632	31600	105	5250	33	1650
100	632	63200	158	15800	33	3300
200	632	126400	158	31600	33	6600
500	632	316000	158	79000	50	25000

4. Interfaces

4.1 Load cell interface

The connector pins for load cell connection are located on the bottom of the enclosure.

4.2 Communication and I/O interfaces

The weight transmitter is equipped with the following interfaces,

- RS-232
- RS-422/485
- USB
- Ethernet
- 3 logical inputs
- 3 logical output
- Analogue outputs

The interfaces are characterised "Protective interfaces" according to paragraph 8.4 in the Directive and do not have to be secured.

5. Inscriptions

The data plate shall bear the following legends:

- The number of this Evaluation Certificate
- Manufacturer's mark or name
- Serial number

6. Securing and sealing

Access to the set-up and calibration facility requires that a calibration jumper is removed from the main board. The jumper can be accessed from the outside, top part of the housing.

The weight transmitter has also a Traceable Access Counter, which increment each time the calibration or legal part of the set-up has been changed.

The sealing of the calibration jumper, which also prevents the housing from being dismantled - is accomplished with a brittle plastic sticker. The sticker is placed across the opening designated 30 behind which the calibration jumper is located.

The electronics of the weight transmitter shall be sealed against dismantling/adjustment using tamper-evident stickers or by wire and seal.

7. Tests

The weight transmitter has been tested according to EN 45501:2015, OIML R76-1:2006, and OIML D11:2004 section 12 and 13 with severity level 3.

By that it also fulfils electromagnetic class E2 of MID (2014/32/EU).

The NAWI test results were re-examined against OIML R61:12017 according to annex F of OIML R61-2:2017

The tested ER500-F had software version number: 1.01.02

The following tests were performed with the weight transmitter connected to a load cell simulator or to a weighing platform.

Examination / tests

Temperature tests: 20/55/-15/5/20 (tested at minimum input-voltage sensitivity)					
Temperature effect on no-load indication					
Temperature effect on sp	Temperature effect on span				
Repeatability					
Tare					
Warm-up time					
Voltage variations					
Electrical bursts	(power supply line	s 2 kV, I/O and data lines 1 kV)			
Surge	e (power supply lines 2 kV)				
Electrostatic discharges					
Immunity to radiated ele	ectromagnetic fields	(10 V/m)			
Immunity to conducted electromagnetic fields (10 V)					
Damp heat, steady state					
Span stability					
Examination of construction					
Maximum load cell cable length and impedance of cable to load cell					
Re-examination against OIML R61:2017					

The test item fulfilled the maximum permissible errors at all tests.

8. Documentation

Contents of the technical documentation held by the notified body:

8.1 Product specification

- Manual
- Schematics
- PCB layout

8.2 Test & Examination report

Type examination report no. 121-24186.10, 66 pages. Type examination report no. 121-24186.10-2, 55 pages.